
Abstract. Using the Z-vector formalism the analytical
gradient of the energy in small CI expansions is derived
and implemented for semiempirical MNDO-type meth-
ods. The computation time is shown to scale as O�N 3�
with the size of the system, with the memory require-
ments growing as O�N 2�. The evaluation of the analyt-
ical gradient is signi®cantly faster than the underlying
SCF and CI calculations, so that routine full geometry
optimizations at the semiempirical CI level become
possible for large systems.
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1 Introduction

Semiempirical methods such as MNDO [1], AM1 [2],
PM3 [3], and MNDO/d [4, 5] account for dynamic
correlation e�ects in an average manner by suitable
integral approximations and parametrization. Semiem-
pirical SCF calculations therefore often provide realistic
results, particularly for ground-state organic molecules
[6±9]. However, an SCF description with a single
determinant is no longer adequate when there are two
or more interacting con®gurations that are degenerate or
nearly degenerate (static correlation). This may occur,
e.g. in reactions involving orbital crossings or in
electronically excited states [10, 11]. In these cases, a
limited con®guration interaction (CI) treatment is man-
datory even at the semiempirical level in order to ensure
a qualitatively correct description. The number of active
orbitals �NCIMO� and the number of con®gurations
�Nconf� are quite small in such semiempirical CI calcu-
lations. The most typical application encountered in
studies of organic reactions involves just two active
orbitals (HOMO and LUMO) and three con®gurations.

Explorations of potential surfaces are greatly facili-
tated if the gradient of the energy with respect to the
nuclear coordinates can be evaluated e�ciently. For
semiempirical closed-shell SCF wavefunctions, the
computational e�ort for the gradient scales as O�N 2�
with the number of basis functions �N�, both in the
numerical and the analytical evaluation [12, 13], com-
pared with an O�N 3� scaling for the SCF energy. On the
other hand, the work for numerical CI gradients scales
as O�N 3 Nat� for a molecule with Nat atoms, and the only
published semiempirical implementation of analytical CI
gradients [14] exhibits the same formal scaling. Hence,
gradient evaluations and geometry optimizations at
the semiempirical CI level are currently prohibitively
expensive for large systems.

Analytical gradients have long been available for
ab initio CI wavefunctions [15±23] (see also Refs. [24±27]
for reviews). In ab initio applications, the number of CI
con®gurations is typically very large in order to recover
a signi®cant portion of the total correlation energy. In
practice, this dictates the use of direct AO-based
techniques in ab initio CI programs. Semiempirical CI
calculations, on the other hand, mainly address static
correlation e�ects and thus normally include only a
small number of con®gurations (see above). This makes
the use of MO-based techniques e�cient and allows
signi®cant simpli®cations in the computation of analyt-
ical CI gradients.

The present paper reports the derivation and imple-
mentation of the analytical gradient for small CI
expansions. We adopt the restriction that it must be
possible to accommodate all relevant arrays in memory,
including the two-particle density matrix in the basis of
the active orbitals �O�N4

CIMO�� as well as the CI matrix
and other matrices of O�N 2

conf�. Under this restriction,
calculations up to NCIMO � 10 and Nconf � 100 can be
done easily on current hardware which should be su�-
cient for most semiempirical applications. Combined
with the Z-vector technique [22] this approach allows an
O�N 3� implementation of the analytical CI gradient
which shares many features with our recent implemen-
tation of the analytical half-electron gradient [28]. Sec-
tion 2 provides the necessary theoretical derivations, as
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far as they are di�erent from our previous work [28], and
Sect. 3 reports on the performance obtained with the
present implementation.

2 Theory

In the general use, the matrix elements of the single-
reference CI Hamiltonian can be written as [29]:

HCI
lm � Erefdlm �

XCIMOs

pqrs

f lm
pqrs�pqjrs� �

XCIMOs

r

elm
r �r ; �1�

where Eref is the energy of the reference state, �pqjrs� are
two-electron integrals in the MO basis, �r are orbital
energies, and f lm

pqrs and elm
r are coe�cients determined by

the selection of the reference state and the CI con®gu-
rations. For small CI active spaces, the number of non-
zero coe�cients f lm

pqrs and elm
r is rather small, so that their

explicit evaluation and storage does not present a
computational bottleneck. Detailed prescriptions for
the determination of these coe�cients are available in
the literature [29±31].

The reference state in semiempirical CI is usually
obtained from a closed-shell SCF calculation, or from a
quasi closed-shell SCF computation with fractional
occupation numbers [31]. In both cases, geometrical
derivatives of the corresponding SCF energy Eref (ER in
the notation of Ref. [28]) are well known [12, 13], and
need not be discussed any further.

CI state energies �ECI� and vectors �A� are solutions
of the matrix equation:

HCIA � AECI ; �2�
subject to the orthonormality conditions on the state
vectors:

AyA � 1 : �3�
Once the CI state vector AK for the state K is available,
the state energy is given by:

ECI
K � AyKH

CIAK : �4�
Due to the variational nature of the CI states, the
derivative of Eq. (4) with respect to an atomic coor-
dinate sa contains no derivatives of the state vector
[15]:

@ECI
K

@sa � AyK
@HCI

@sa AK : �5�
Substitution of Eq. (1) for the CI matrix elements into
Eq. (5) results in [16]:

@ECI
K

@sa �
@Eref

@sa �
@EK

@sa ; �6�

@EK

@sa �
XCIMOs

pqrs

CK
pqrs

@

@sa �pqjrs� �
XCIMOs

r

DK
r

d�r

dsa ; �7�

where the two-particle density CK and the Lagrangian
multipliers DK

r corresponding to the state K are given by:

CK
pqrs �

X
lm

AlKAmKf lm
pqrs ; �8�

DK
r �

X
lm

AlKAmKelm
r : �9�

Equation (7) contains derivatives of the two-electron
integrals in the MO basis which involve the ®rst-order
orbital coe�cients xij [27]:

@

@sa �pqjrs� � �pqjrs�a �
X

i

�
xip�iqjrs�

� xiq�pijrs� � xir�pqjis� � xis�pqjri�	 : �10�
The static part �pqjrs�a of these derivatives can be
computed from the corresponding quantities �lmjkr�a in
the AO basis and the LCAO coe�cients Cli. In MNDO
approximation and standard notation [28]:

�pqjrs�a �
X
B 6�A

XA

l�m

XB

k�r

�lmjkr�a Opq
lmO

rs
kr � Ors

lmO
pq
kr

n o
;

�11�
Oij

lm � CliCmj � �1ÿ dlm�CmiClj : �12�
Substitution of Eqs. (10±12) into Eq. (7) allows separa-
tion of the derivative expression into static and response
parts:

@EK

@sa �
@EK

@sa

� �����
static

� @EK

@sa

� �����
response

: �13�

The static part is given by:

@EK

@sa

� �����
static

�
XCIMOs

pqrs

CK
pqrs �pqjrs�a ; �14�

or, equivalently, by:

@EK

@sa

� �����
static

�
X
lmkr

Ck
lmkr �lmjkr�a ; �15�

where the two-particle density matrix in the AO basis is
de®ned as:

CK
lmkr �

XCIMOs

pqrs

CK
pqrsClpCmqCkrCrs : �16�

Both Eqs. (14) and (15) can be evaluated in an inte-
gral-driven manner, avoiding storage of either the static
derivatives of two-electron MO integrals [O�N4

CIMO Nat�,
Eq. (14)] or of the two-particle density matrix in the AO
basis [O�N2� in MNDO approximation, Eq. (15)]. The
MO-based approach (Eq. 14) is slightly more e�cient
for small CI-active spaces, and is used in the present
work.

The response part of the derivative is given by:

@EK

@sa

� �����
response

�
X

i

XCIMOs

p

xipqip �
XCIMOs

p

DK
p
@�p

@sa ; �17�

where:
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qip � 4
XCIMOs

qrs

CK
pqrs �iqjrs� : �18�

Employing the symmetry of the ®rst-order orbital
coe�cients xij [28], Eq. (17) can be rewritten as:

@EK

@sa

� �����
response

�
Xactive set
i�j

QijX
a
ij � QyXa ; �19�

where:

Qpp � DK
p if p 2 CI MOs ; �20�

Qip � qip if i j2 CI MOs; p 2 CI MOs,
and p > i ; �21�

Qpi � ÿqip if i j2 CI MOs; p 2 CI MOs,
and p < i ; �22�

Qpr � qpr ÿ qrp if p; r 2 CI MOs and p < r : �23�
The elements of the vector Xa are [28]:

Xa
ij � xij if i < j ; �24�

Xa
ii �

@�i

@sa : �25�
Since the response part of the derivative is linear in Xa

[Eq. 19], the Z-vector technique [22] can be applied to
improve the performance of the gradient computation.
An e�cient symmetric formulation of the Z-vector
method suitable for semiempirical applications has been
discussed in detail previously [28] and is directly appli-
cable to the CI gradients.

Implementation issues for the response part of the
CI gradient are essentially the same as in the half-
electron case [28], with one important distinction.
Whereas the number of redundant CPHF variables in
half-electron computations is small (typically zero or
one), there are generally O�NCIMON� redundant vari-
ables in the CI gradient expression. Hence, the MO-
based transformation of the redundant parts [28] scales
as O�NCIMON 4� for the CI gradient and becomes inef-
®cient. The AO-based procedure [28] remains e�cient
with a formal O�N 3� scaling and is therefore used in the
CI case.

Analytical CI gradients have been implemented in the
MNDO94 program [32]. Since the rate-determining part
of the code (i.e. the solution of the Z-vector CPHF
equations) is essentially the same as in our previous
implementation [13, 28], the program structure and the
detailed distribution of the computational e�ort need
not be discussed here.

3 Results and discussion

In order to assess the overall performance of the present
implementation relative to numerical techniques and to
the previous analytical implementation [14], Cartesian
energy gradients were computed for a series of D2h
condensed aromatic hydrocarbons in the highest singlet
state of the minimal 3� 3 CI involving HOMO and

LUMO of the closed-shell reference con®guration. The
convergence criterion for the SCF energy was 10ÿ7 eV
(ca. 4� 10ÿ9 au), while the CPHF equations were
required to converge within 10ÿ6 au. Although less
stringent convergence criteria are usually su�cient for
SCF and half-electron gradients, the CI results appear to
be more sensitive to the quality of the orbitals. With
these convergence criteria, numerical and analytical
gradients agree within 0:1 kcalmolÿ1 ÊA

ÿ1
(ca. 10ÿ4 au),

and need not be shown here.
As can be seen from the execution times given in

Table 1, gradient evaluation requires a small fraction of
the time necessary for an energy evaluation (SCF� CI),
except for very small molecules, where the overhead of
setting up the analytical computation is signi®cant. The
analytical CI gradient becomes progressively more e�-
cient compared to SCF� CI for larger systems, which
re¯ects a more localized memory access pattern in the CI
gradient program.

The speedup over previously available techniques is
substantial, e.g. more than two orders of magnitude for
C66H20. Combined with memory requirements compa-
rable to those of the SCF procedure [13, 28], this allows
routine geometry optimizations and vibrational analysis
of large molecules at the CI level. For example, the
MNDO vibrational analysis of a C60 dimer (480 orbitals,
C2h symmetry) at the 3� 3 CI level (via ®nite di�erences
of analytical CI gradients) took about 17 h on an
SGI PowerChallenge using one 90 MHz R8000 CPU.
With previously available techniques, such computa-
tions would not have been practical.

4 Conclusion

The Z-vector formulation of the analytical gradient of
the energy in small CI expansions provides a substantial
increase in the computational e�ciency over both
numerical and previous analytical [14] implementations.
The computation time formally scales as O�N 3� with the
size of the system, and is typically a small fraction of the
SCF computation time, with memory requirements
growing as O�N 2�.

Table 1. Comparison of computation timesa (in seconds)

Systemb Orbitals SCF+CI Numerical
gradient

Analytical
gradient,
Ref. [14]c

Analytical
gradient,
present
work

C10H8 48 0.76 49.69 15.80 0.59
C32H14 142 15.53 2458.19 1227.99 8.18
C66H20 284 165.80 37833.31 24049.04 62.33
C112H26 474 1094.41 d d 288.81
C170H32 712 7778.39 d d 1122.22

aOn an SGI Indigo2 with a 100 MHz R4000 CPU and 112 MB of
main memory
bAt an idealized D2h geometry with RCC � 1:4066 ÊA and RCH �
1:0904 ÊA
cAs implemented in MOPAC7 [33]
dNot computed, estimated execution time too large
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